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2 Hertz Potentials

2.1 Introduction

A general feature of classical electrodynamics is the fact that an
electromagnetic field must be a solution of Maxwell's equations. Therefore
many theoretical considerations on the structure of Maxwell's equations
exist. The analysis of an electromagnetic field is often facilitated by the use
of auxiliary functions known as potential functions (scalar, vectorial,
tensorial) [1, p.23]. These are solutions of partial differential equations. The
partial differential equations are such, that solving them for the potential
functions is equivalent to the more tedious task of solving Maxwell's
equations directly [2].

The most elegant approach to this is the field representation in terms of
Green's tensors. However, this treatment has the fundamental
disadvantage that tensor differential equations have to be solved. It is only
for special kinds of media that Green's tensors can be reduced to scalar
Green's functions [2].

It was shown by Hertz that an arbitrary electromagnetic field in a (source
free) homogeneous linear isotropic medium can be defined in terms of a
single vector potential 

�

∏  [1, p.28]. The Hertz vector potential notation is an
efficient mathematical formalism for solving electromagnetic problems. As
will be shown, Hertz vector potential can be reduced to a set of two scalar
potentials, which are solutions of Helmholtz’s equations, for any orthogonal
curvilinear coordinate system. These solutions are independent only in the
case of an isotropic medium [2]. Note that at present the Hertz potential
notation has been extended in order to take into account sources contained
in the medium [1, pp. 30-32 & pp. 430-431]. However, this can not be done
in a straightforward manner. The current and charge densities first need to
be expressed in terms of an electric polarization vector 

�

P  using the

formulas: 
�

�

J P
t

= ∂
∂

 and ρ = −∇ ⋅
� �

P .

A lot of present day textbooks on the subject of electromagnetism rely
heavily on the magnetic vector potential 

�

A  and the scalar potential φ , also
often called the mixed potential method. The main advantage of this
method is the fact that the two Helmholtz’s equations that result from it (one
vectorial and one scalar), directly take into account any current or charge
sources lying in the medium. This is in contrast with the Hertz vector
potential method where, as has been explained in the previous paragraph,
the scalar potentials are more closely connected to the field intensities 

�

E
and 

�

H.
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The magnetic vector potential 
�

A  and the scalar potential φ  are related to

the Hertz vector potential as follows [1, pp. 28-29]: 
�

�

A
t

= ∏µε ∂
∂

 and

φ = −∇ ⋅∏
� �

, provided that 
�

A  is defined by 
� � �

B A= ∇ ×  and not 
� � �

H A= ∇ × .
(The latter definition is more common in East European countries.)

The big strength of the Hertz vector potential method lies with the fact that
there is no need to check whether the solutions of the two scalar partial
differential equations are solutions of the posed problem. This is clearly not
the case with the mixed potential method [3, p. 679]. For problems situated
in source free media, this property of the Hertz vector potential method far
outweighs the advantages of any other method. This also explains why, in
this text, the Hertz vector potential method is preferred over the mixed
potential method.

In recent years, a lot of research effort went into the development of
potential formulations for anisotropic, gyrotropic, chiral and spatially
inhomogeneous media [2]. For a detailed discussion on scalar Hertz
potentials for bigyrotropic media see [4].
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2.2 Hertz's Wave Equation for Source Free Homogeneous
Linear Isotropic Media

Assuming ej tω  time dependence, Hertz's wave equation for a source free
homogeneous linear isotropic medium, independent of the coordinate
system, is [3, p. 729]
∇ ∏+ ∏ =2 2 0

� �

k (1)
where ( )∇ ≡ ∇ ∇ ⋅ − ∇ × ∇ ×2 �

� �

�

� �

�

v v v    (
�

v  is any vector)   [1, p. 25], [3, p. 95]

and ( )k j j j2 2= − + = −ωµ σ ωε εµω ωµσ .
(k is the complex wave number of the surrounding medium.)

Hertz's wave equation for source free homogeneous linear isotropic media
(1) has two types of independent solutions: 

�

∏ e  and 
�

∏m .

These result in independent sets of E-type waves
( )

� � �

H j e= + ∇ × ∏σ ωε , (2a)

( )� � � � �

E k e e= ∏ +∇ ∇ ⋅∏2 , (2b)

and H-type waves, respectively [3, p. 729]
� � �

E j m= − ∇ × ∏ωµ , (3a)

( )� � � � �

H k m m= ∏ +∇ ∇ ⋅∏2 . (3b)

Note that throughout this text, permittivity ε will be treated as a complex quantity with two
distinct loss contributions [5]

ε ε ε σ
ω

= ′ − ′′ −j j

where − ′′jε  is the loss contribution due to molecular relaxation

and − j σ
ω

 is the conduction loss contribution. (The conductivity σ is measured at DC.)

However, in practice it is not always possible to make this distinction. This is often the case
with metals and good dielectrics. In those cases all losses can be treated as though being
entirely due to conduction or molecular relaxation, respectively.

Above relations follow from

( )
� � � � � �

∇ × = + = ′ − ′′ +H j D J j j E Eω ω ε ε σ .

The loss tangent of a dielectric medium is defined by

tanδ ωε σ
ωε

≡ ′′ +
′

.

Permeability µ has only one loss contribution due to hysteresis: µ µ µ= ′ − ′′j .
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2.3 Hertz's Wave Equation in Orthogonal Curvilinear
Coordinate Systems with Two Arbitrary Scale Factors

Consider a right-hand orthogonal curvilinear coordinate system with
curvilinear coordinates ( )u u u1 2 3, , . Scale factor h1 equals one and scale
factors h2 and h3 can be chosen arbitrary.

(A detailed explanation of what curvilinear coordinates and scale factors are, can be found
in [1, pp. 38-59] and [6, pp. 124-130], together with definitions of gradient, divergence, curl
and Laplacian for such coordinate systems.)

Hertz's vector wave equation for source free homogeneous linear isotropic
media (1) can be reduced to a scalar wave equation [3, pp. 729-730] by
making use of the definitions given in [1, pp. 49-50]

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

2

1
2

2 3 2

3

2 2 2 3 3

2

3 3

21 1 0∏ + ∏





 +

∏





 + ∏ =

u h h u
h
h u h h u

h
h u

k (4)

with ( )
�

�

∏ = ∏ u u u e1 2 3 1, , . (5)
�

e1 is in the unit vector in the u1-direction.

The field components of the E-type waves are obtained by introducing (5)
into (2a+b)

E k
ue

e
1

2
2

1
2= ∏ +
∏∂
∂

;   H1 0= ,

E
h u u

e
2

2

2

1 2

1=
∏∂

∂ ∂
;   

( )
H

j
h u

e
2

3 3

=
+ ∏σ ωε ∂

∂
, (6)

E
h u u

e
3

3

2

1 3

1=
∏∂

∂ ∂
;   

( )
H

j
h u

e
3

2 2

= −
+ ∏σ ωε ∂

∂
.

The field components of the H-type waves are obtained by introducing (5)
into (3a+b)

H k
um

m
1

2
2

1
2= ∏ +
∏∂
∂

;   E1 0= ,

H
h u u

m
2

2

2

1 2

1=
∏∂

∂ ∂
;   E j

h u
m

2
3 3

= −
∏ωµ ∂
∂

, (7)

H
h u u

m
3

3

2

1 3

1=
∏∂

∂ ∂
;   E j

h u
m

3
2 2

=
∏ωµ ∂
∂

.

As can be seen from (7) and (8), E-type waves have no H-component in the
u1-direction, whereas H-type waves have no E-component in that direction.
By choosing appropriate values for h2 and h3, expressions for the field
components in Cartesian, cylindrical (including parabolic and elliptic) and
even spherical coordinate systems can be obtained.
The more general case with three arbitrary scale factors gives rise to an
insoluble set of interdependent equations [1, pp. 50-51].
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2.4 Hertz's Wave Equation in a Cartesian Coordinate System

The three scale factors h1, h2 and h3 all equal one in a right-hand Cartesian
coordinate system ( )u u u1 2 3, , . Hence, Hertz's vector wave equation (4)
simplifies to
∂
∂

∂
∂

∂
∂

2

1
2

2

2
2

2

3
2

2 0∏ + ∏ + ∏ + ∏ =
u u u

k (8)

with ( )
�

�

∏ = ∏ u u u e1 2 3 1, , . (9)
�

e1 is the unit vector in the u1-direction.

Therefore, the field components of the E-type waves are

E k
ue

e
1

2
2

1
2= ∏ +
∏∂
∂

;   H1 0= ,

E
u u

e
2

2

1 2

=
∏∂

∂ ∂
;   ( )H j

u
e

2
3

= +
∏

σ ωε
∂
∂

, (10)

E
u u

e
3

2

1 3

=
∏∂

∂ ∂
;   ( )H j

u
e

3
2

= − +
∏

σ ωε
∂
∂

.

The field components of the H-type waves are

H k
um

m
1

2
2

1
2= ∏ +
∏∂
∂

;   E1 0= ,

H
u u

m
2

2

1 2

=
∏∂

∂ ∂
;   E j

u
m

2
3

= −
∏

ωµ
∂
∂

, (11)

H
u u

m
3

2

1 3

=
∏∂

∂ ∂
;   E j

u
m

3
2

=
∏

ωµ
∂
∂

.
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2.5 Hertz's Wave Equation for a 2D-Uniform Guiding Structure

Propagation along a guiding structure occurs in one direction only. In this
text, the x-axis is chosen to be parallel with the propagation direction.
Therefore, the waves along a uniform guiding structure have only an

( )e j t xxω β− -dependence in that direction. This means that Hertz vector
potentials for two-dimensional uniform guiding structures are of the form
[3, p. 800]

( )
�

�

∏ = −F y z e ej xx, β
1

where 
�

e1 can be either in the x-, y- or z-direction

and phase constant β β β
γ

x x x
xj
j

= ′ − ′′ = .

The propagation of electromagnetic waves is usually characterized in terms of the
propagation constant γ α β= + j , where α is called the attenuation constant.

The formulation for β used in this text, is consistent with the expression for  γ , namely
( )γ β β β β β α= ′ − ′′ = ′′ + ′ ⇒ ′′ ≡j j j .

There exist a large number of 2D-uniform guiding structures, some of the best known
examples are: the parallel wire line, coaxial cable, waveguide, strip line, microstrip line, slot
line and the coplanar line.

Since ∂
∂

β
2

2
2∏ = − ∏

x x , Hertz's scalar wave equation (8) becomes

∂
∂

∂
∂

2

2

2

2
2 0∏ + ∏ + ∏ =

y z
s (12)

where s k jx x
2 2 2 2 2= − = − −β εµω ωµσ β . (13)

Solutions to (12) can readily be found by separation of the variables.
Namely, let ( ) ( )∏ = −Y y Z z e j xxβ . (14)

Substituting (14) into (12) and dividing by (14) gives
1 1 0

2

2

2

2
2

Y
d Y
dy Z

d Z
dz

s+ + = .

Since the last term in the above equation is independent of both y and z,
the first two terms need to be this as well.
Therefore,
1 2

2
2

Y
d Y
dy

sy= − ;   1 2

2
2

Z
d Z
dz

sz= −    and   s s sy z
2 2 2+ = . (15)
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The first two equations in (15) are linear homogeneous second order
differential equations
d Y
dy

s Yy

2

2
2 0+ = ;   d Z

dz
s Zz

2

2
2 0+ = .

Hence, suitable Hertz potential solutions for two-dimensional uniform
guiding structures are of the form [6, p. 105]

[ ] [ ]∏ = + ⋅ + ⋅+ − + − −c e c e c e c e ejs y js y js z js z j xy y z z x
1 2 3 4

β , or equally,

( ) ( )[ ] ( ) ( )[ ]∏ = + ⋅ + ⋅ −c s y c s y c s z c s z ey y z z
j xx

5 6 7 8cos sin cos sin β .
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2.6 Hertz's Wave Equation in a Circular Cylindrical Coordinate
System

In a cylindrical coordinate system, the scale factors are generally different
from one, except for the scale factor associated with the symmetry axis,
usually called the z-axis. In order to apply expression (4), the scale factor h1
should equal one. Therefore, let u z1 = .

The special case of a right-hand circular cylindrical coordinate system
( )r z, ,φ  gives u z1 = ;   u r2 =   and  u3 = φ . (16)

The differential line element d�  in a circular cylindrical coordinate system
( )r z, ,φ  is [7]

d dr r d dz� = + +2 2 2 2φ .

The scale factors are hence [6, p. 124]

h
z1 1= =∂
∂
� ;   h

r2 1= =∂
∂
�   and  h r3 = =∂

∂φ
� . (17)

Substitute (16) and (17) into (4) to get
∂
∂

∂
∂

∂
∂

∂
∂φ

∂
∂φ

2
21 1 1 0∏ + ∏




+ ∏






 + ∏ =

z r r
r

r r r
k (18)

with ( )
�

�

∏ = ∏ z r ez, ,φ . (19)

Propagation in cylindrical symmetric transmission lines occurs in one
direction only, which is usually along the z-axis. This means that the
expression for the Hertz vector potentials simplifies to

( )
�

�

∏ = −F r e ej z
z

z,φ β .

Since ∂
∂

β
2

2∏ = − ∏
z z , Hertz’s scalar wave equation (18) becomes

1 1 1 02

r r
r

r r r
s∂

∂
∂
∂

∂
∂φ

∂
∂φ

∏




+ ∏






 + ∏ = (20)

where s k jz z
2 2 2 2 2= − = − −β εµω ωµσ β . (21)

Solutions to (20) can readily be found by separation of the variables.
Namely, let ( ) ( )∏ = −R r e j zzΦ φ β . (22)

Substituting (22) into (20) and dividing by (22) results in [3, p. 739]
1 1 1 1 1 02

R r
d
dr

r dR
dr r

d
d r

d
d

s













 +

















 + =

Φ
Φ

φ φ
. (23)
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Multiplying (23) by r2 gives
r
R

d
dr

r dR
dr

d
d

s r




+ + =1 0

2

2
2 2

Φ
Φ
φ

. (24)

Equation (24) can be separated using a separation constant n into
1 2

2
2

Φ
Φd

d
n

φ
= − , (25)

r
R

d
dr

r dR
dr

s r nr





+ =2 2 2 (26)

where s s kr z
2 2 2 2= = − β .

Equation (25) is a linear homogeneous second order differential equation
d
d

n
2

2
2 0Φ Φ

φ
+ = .

Solutions for Φ are of the form [6, p. 105]
Φ = ++ −c e c ejn jn

1 2
φ φ , or equally, (27a)
( ) ( )Φ = +c n c n3 4cos sinφ φ . (27b)

Rewriting equation (26) results in an expression which can be recognized
as Bessel’s equation of order n [6, p. 106]
r
R

d
dr

r dR
dr

s r nr





+ − =2 2 2 0

⇒ + ⋅






 + − =r

R
r d R

dr
dR
dr

s r nr

2

2
2 2 21 0

( )⇒ + + − =r d R
dr

r dR
dr

s r n Rr
2

2

2
2 2 2 0 (28)

with n ≥ 0 .

Solutions to Bessel’s equation of order n (28) are of the form [6, p. 106],
[8, pp. 97-88]

( ) ( )R c J s r c Y s rn r n r= +5 6 , or equally, (29a)

( ) ( )R c H s r c H s rn r n r= +7
1

8
2( ) ( ) . (29b)

These solutions are linearly independent only if n is a positive integer.

At this point, Hertz’s scalar wave equation for circular cylindrical coordinate
systems (20) is solved. It suffices to substitute any form of (27) and (29)
into (22) to obtain the Hertz potential solutions.
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Substituting (16) and (22) into (6) gives the field components of the E-type
waves expressed in terms of a Hertz potential  [3, p.740]
E sz r e= ∏2 ;   Hz = 0 ,

E j
rr z

e= −
∏

β
∂
∂

;   
( )

H
j

rr
e=

+ ∏σ ωε ∂
∂φ

, (30)

E j
r
z e

φ
β ∂

∂φ
= −

∏ ;   ( )H j
r

e
φ σ ωε

∂
∂

= − +
∏ .

Likewise, substitute (16) and (22) into (7) to obtain the field components of
the H-type waves
H sz r m= ∏2 ;   Ez = 0,

H j
rr z

m= −
∏

β
∂
∂

;   E j
rr

m= −
∏ωµ ∂
∂φ

, (31)

H j
r
z m

φ
β ∂

∂φ
= −

∏ ;   E j
r

m
φ ωµ

∂
∂

=
∏ .
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2.7 Conclusions

Chapter 2 gave a review of Hertz potential theory. The convenience of
expressing source free electromagnetic fields in terms of Hertz potentials
was clearly demonstrated. The theory is kept as general as possible,
making it useful as a reference while solving many other electromagnetic
problems.
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