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3 Plane Surface Waves along Plane Layers of Isotropic Media

3.1 Definition

A plane surface wave is defined as a plane wave that propagates along a
plane interface of two different media without radiation [1, p.5].
Note that radiation in this context is construed as being energy converted
from the surface wave field to some other field form.

Plane surface waves are inhomogeneous waves because the field is not
constant along surfaces of constant phase. In fact, in the case of a surface
wave the field decays exponentially over the wavefront with increase of
distance from the surface.

There are E-type and H-type surface waves. The field of an E-type plane
surface wave is depicted in Figure 3.1. For an H-type wave the E- and H-
fields are interchanged and one of the fields is reversed in sign. Explicit
equations for the fields of plane surface waves along various structures will
be derived rigorously later in this chapter.
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Figure 3.1: The field of an E-type plane surface wave
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3.2 Plane Surface Waves and the Brewster Angle Phenomenon

There are many ways to explain the mechanism of surface waves. In the
mid-fifties Barlow et al. introduced the concept of surface impedance for
this purpose [1, pp. 15-17], [2], which will be explained in a later section.
Earlier work by Zenneck (1907) associated plane surface waves with the
Brewster angle phenomenon [1, pp. 29-33], [3, p. 697-701]. For this reason
plane surface waves are sometimes also called Zenneck waves. Due to the
many prevailing misconceptions, the relation between plane surface waves
and the Brewster angle will receive some further attention here.

The Brewster angle is the angle of incidence at which a plane wave incident
on a plane material interface is totally transmitted (i.e. without reflection)
from one medium, called medium 2 here, into another medium, called
medium 1. Both media are assumed to be half spaces. In lossless media,
the Brewster angle phenomenon only occurs for perpendicular and parallel
polarized incident plane waves. (The terms “perpendicular” and “parallel”
refer to the orientation of the electric field intensity vector 

�

Ei  of the incident
plane wave with respect to the plane of incidence.) The Brewster angle is
different for the two types of polarization. From Fresnel’s equations [4], it
can be shown that the Brewster angle for perpendicular polarized incident
plane waves is
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for parallel polarized incident plane waves.

Above equations result in a complex value for the Brewster angle:
– if, for perpendicular polarization, µ µ2 1> ,
– or if, for parallel polarization, ε ε2 1> ,
– or if at least one of the two media has losses.

The physical meaning of a complex angle of incidence is an inhomogeneous plane
wave (which in fact very much resembles a surface wave) incident at that angle [1,
p. 30], [3, p. 717], [5]. When the Brewster angle is complex, the angle for which
the magnitude of the reflection coefficient is a minimum, is called the pseudo-
Brewster angle [1, p. 31]. The Brewster angle is also sometimes called the
polarizing angle since a wave with both perpendicular and parallel components
and which is incident at the Brewster angle will produce a reflected wave with only
a perpendicular or parallel component [6, p. 617]. To summarize, the only
connection between surface waves and the Brewster angle lies in the fact that the
inhomogeneous wave required by a complex Brewster angle resembles a surface
wave.
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3.3 Plane Surface Waves, Total Reflection and Leaky Waves

An idea of what the different fields along a material interface may look like,
can be obtained by employing ray-optics theory once again. The existence
of propagating plane surface waves along a coated perfectly conducting
plane, for example, can be explained with the help of the total reflection
phenomenon as shown in Figure 3.2.

y
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z

Figure 3.2: A ray-optics explanation for the propagation of plane surface
waves along a coated perfectly conducting plane

Total reflection only occurs when a wave from medium 1 impinges upon
medium 2 at an angle of incidence θ1i  equal to or exceeding the critical
angle θc  and then only if medium 1 is more “dense” than medium 2 (k1>k2).

An expression for the critical angle as a function of k1 and k2 can be
obtained as follows. The relation between the angles of reflection and
refraction is given by Snell’s law ( ) ( )k kt i2 2 1 1⋅ = ⋅sin sinθ θ
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As suggested in Figure 3.2, total reflection can be accompanied by a
surface wave propagating in medium 1, parallel with the material interface.
What is not shown, is the fact that a surface wave field most of the times
also extends into medium 2. This will be proven in the next section. Note
that a surface wave can exist along a coated perfectly conducting plane
only if the coating (medium 1) is more dense than the upper half space
(medium 2) (k1>k2). If this is not the case or if the angle of incidence θ1i  is
smaller than the critical angle θc , part of the wave in medium 1 will be
transmitted into medium 2 with each partial reflection. Therefore, the field
will quickly attenuate in the x-direction. The resulting inhomogeneous plane
wave is called a leaky wave and propagates away from the interface (Fig.
3.3b).

Figure 3.3: (a) A surface wave, (b) a leaky wave (Medium 2 is assumed to
be loss free in this figure.)

Note that 
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α 2  is perpendicular to 
�

β2  only if medium 2 is loss free
(Im(k2) = 0). This will be shown now.
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For the sake of simplicity, 
�

α 2  will always be drawn for the case where
medium 2 is loss free, i.e. perpendicular to 

�

β2 . However, the theory
developed in this text equally applies for lossy upper media.

Leaky waves violate the radiation condition since they only may exist if
power is delivered to medium 1 from outside, in a direction towards the
material interface with medium 2. This can be achieved by replacing the
perfectly conducting plane in Figure 3.2 by the outer wall of a slotted
waveguide. It also important to  know that a leaky wave can not be exited
by a plane wave incident from medium 2. In such a case, the result will be a
standing wave in medium 2.
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3.4 Plane Surface Waves along a Coated, Electric Perfectly
Conducting Plane

3.4.1 Introduction

In the previous section the existence of surface waves was shown by
making use of ray-optics theory, which is merely an approximate theoretical
model. A rigorous approach consists of treating the layer structure as a
boundary-value problem and solving it using Hertz potentials. A first
analysis deals with the propagation of plane surface waves along the
interface of a homogeneous linear isotropic half space with a homogeneous
linear isotropic layer of finite height h that is supported by an electric
perfectly conducting plane (Fig. 3.4). The solution of the more general
three-layer structure with arbitrary material constants will be presented later
in this chapter. The special case of an electric perfectly conducting
substrate is presented first because it more readily provides the reader with
a number of basic insights. It is important to note that the structures in the
following sections can be solved both for forward propagating surface
waves and leaky waves. For surface wave propagation it is necessary that
k1 > k2. For leaky waves, k1 may be smaller than k2. Leaky waves violate
the radiation condition and are therefore of little practical interest to RCS
management.

 

y
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z

Figure 3.4: A coated, electric perfectly conducting plane; it is assumed that
all media are homogeneous, linear and isotropic.
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It is obvious that the Cartesian coordinate system (Section 2.4) is best
suited for the analysis of plane waves. Assuming plane wave propagation in
the x-direction, the structure of Figure 3.4 can be treated as a special case
of a 2D-uniform guiding structure (see Section 2.5). Here however, none of
the field components can have a y-dependence due to the fact that both
media are infinite in the y-direction. Hence, the Hertz vector potential 

�

∏  will
have no y-dependence. Note that a field vector can still have components
in the y-direction. For reasons that will be explained later, 

�

∏  needs to be
chosen in the z-direction.

A general expression for a Hertz vector potential having above-mentioned
properties is

( )
�

�

∏ = ∏ −z e ej x
z

xβ . (1)

In order to be able to apply (2.10) and (2.11), the relation between the
curvilinear coordinates and the Cartesian coordinates must be as follows
u z1 = ;   u x2 =   and  u y3 = .
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Substituting (1) into (2.10) results in general expressions for the field
components of  E-type waves within a medium

E k
zz e

e= ∏ +
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2
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E j
zx x
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∂
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yx
e= +

∏
=σ ωε

∂
∂

0 , (2)

E
z yy

e=
∏

=
∂
∂ ∂

2

0 ;   ( )H j jy x e= + ∏β σ ωε .

From (2) it can be seen that E-type plane surface waves are:
1)  longitudinal section magnetic (LSM) waves; the magnetic field intensity

�

H has no component in the direction normal to the material interface
( )Hz = 0  and

2)  transversal magnetic (TM) waves; the magnetic field intensity 
�

H has no
component in the propagation direction ( )Hx = 0 .

Substituting (1) into (2.11) leads to general expressions for the field
components of  H-type waves within a medium
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2

2

∂
∂

;   Ez = 0,

H j
zx x
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∂

∂
;   E j
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∂
∂
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H
z yy

m=
∏

=
∂
∂ ∂

2

0 ;   Ey x m= ∏β ωµ .

It can be concluded from (3) that H-type plane surface waves are:
1)  longitudinal section electric (LSE) waves; the electric field intensity 

�

E
has no component in the direction normal to the material interface
( )Ez = 0  and

2)  transversal electric (TE) waves; the electric field intensity 
�

E  has no
component in the propagation direction ( )Ex = 0 .
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3.4.2 E-Type Plane Surface Waves along a Coated, Electric Perfectly
Conducting Plane

A suitable Hertz function for medium 1 that satisfies the boundary condition
E at zx = =0 0
is ( )∏ = −

1 1 1A s z ez
j xxcos β . (4)

The factor ( )cos s zz1  may be interpreted as a standing wave in the z-
direction.

Introducing (4) into (2) results in
( ) ( )E A k s s z ez z z

j xx
1 1 1

2
1

2
1= − −cos β , (5a)

( )E j A s s z ex x z z
j xx

1 1 1 1= −β βsin , (5b)
Ey1 = 0 , (5c)
Hz1 0= , (5d)
Hx1 0= , (5e)

( ) ( )H j j A s z ey x z
j xx

1 1 1 1 1= + −β σ ωε βcos . (5f)

Recalling (2.13)
s k s kz x z x1

2
1
2 2

1 1
2 2= − ⇒ = + −β β . (6)

It is only for a matter of convenience that sz1 is chosen to equal the positive
square root. Choosing the negative square root would have no effect on the
results.

A suitable Hertz function for medium 2 that satisfies the boundary condition
� � �

E H when z= = → +∞0
is ( )∏ = − − −

2 2
2A e ejs z h j xz xβ . (7)

The factor ( )e js z hz− −2  may be interpreted as a wave propagating in the
positive z-direction with phase constant s s jsz z z2 2 2= ′ − ′′ . Contrary to (6), the
sign of sz2 is of importance here because sz2 belongs to the argument of an
exponential function and therefore determines whether the solutions will be
forward propagating surface waves or leaky waves. For surface waves,

′′ > ⇒ <s sz z2 20 0Im( ) , which corresponds to a decaying field in the positive
z-direction. If on the other hand Im( )sz2 0> , the wave is a leaky wave. In
that case the radiation condition is violated because the field in medium 2
increases exponentially away from the interface.
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The appropriate sign for sz2 can easily be found when both materials are
lossless. k2 and βx are real numbers then. Moreover, all plane surface
waves and leaky waves will be slow waves (βx > k2) as is the case for all
inhomogeneous waves propagating in loss free media (see Appendix A).

For surface waves in loss free media, jsz2 must be real and positive,
hence js s kz z x2 2

2 2
2
2= + − = + −β

⇒ = − − = + −s j k kz x x2
2

2
2

2
2 2β β  (see also Appendix B),

whereas for leaky waves in loss free media
s k js j k kz x z x x2 2

2 2
2 2

2 2 2
2
2= − − ⇒ = − − = − −β β β .

However, things are more complicated when at least one of both media
contains losses. Surface waves and leaky waves no longer need to be slow
waves. The many possibilities for the value of sz2 will be discussed now for
the case k2 = k0.

Thus, ( )s k k j k jz x x x x x x x0
2

0
2 2

0
2 2

0
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Finally, de Moivre’s theorem gives
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where p is either 0 or 1.
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.

The four possibilities for the location of sz0 in the sz0-plane (Fig. 3.5) are

u p sz> = ⇒ ∠ ∈





⇒0 0 0
40, , π   a leaky wave,

u p sz≥ = ⇒ ∠ ∈ 





⇒0 1 5
40, ,π π   a surface wave,

u p sz≤ = ⇒ ∠ ∈ −





= 





⇒0 0
4

0 7
4

20, , ,π π π   a surface wave,

u p sz< = ⇒ ∠ ∈





⇒0 1 3
40, ,π π   a leaky wave.
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Figure 3.5: The complex sz0-plane

Slow surface waves with moderate losses will most often fall into the third
category. Equation (8a) gives rise to surface wave solutions as long as
u k kx x x x≤ ⇔ − ′ + ′′ ≤ ⇔ ′′ ≤ − ′0 00

2 2 2 2
0
2 2β β β β

where k andx x0, ′ ′′β β  are all positive real numbers.
Even surface wave absorbers will almost always meet this requirement.
This is shown by the numerical examples presented later in this chapter.
However, to remain as general as possible, surface wave solutions are only
obtained by letting ( )Re jsz2 0≥  or

( )js sign k kz x x2
2

2
2 2

2
2= −





−Re β β . (8a)

To obtain leaky wave solutions, let

( )js sign k kz x x2
2

2
2 2

2
2= − −





−Re β β . (8b)

Introducing (7) into (2) leads to
( ) ( )E A k s e ez z

js z h j xz x
2 2 2

2
2

2 2= − − − − β , (9a)
( )E A s e ex x z

js z h j xz x
2 2 2

2= − − − −β β , (9b)
Ey2 0= , (9c)
Hz2 0= , (9d)
Hx2 0= , (9e)

( ) ( )H j j A e ey x
js z h j xz x

2 2 2 2
2= + − − −β σ ωε β . (9f)
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sz0

Re(sz0)

Im(sz0)

Surface
Waves
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The tangential components of both 
�

E  and 
�

H are continuous across the
interface of two media and therefore
E E at z hx x1 2= =

( )⇒ =A s s h jA sz z z1 1 1 2 2sin , (10)

as well as H H at z hy y1 2= =

( ) ( ) ( )⇒ + = +σ ωε σ ωε1 1 1 1 2 2 2j A s h j Azcos . (11)

Note that (10) and (11) would have resulted in a set of contradictory
equations, if 

�

∏m e,  were chosen in any direction other than the z-direction.

Dividing (10) by (11) yields

( )s
j

s h js
j

z
z

z1

1 1
1

2

2 2σ ωε σ ωε+
=

+
tan . (12)

Substituting (6) and (8a) into (12) results in the following expression for E-
type surface waves

( ) ( )k
j

h k
sign k k

j
x

x

x x
1
2 2

1 1
1
2 2

2
2
2 2

2
2

2 2

−
+

− =
−





−

+
β

σ ωε
β

β β

σ ωε
tan

Re
. (13)

This equation is transcendental and can therefore only be solved
numerically for β x . It is called a dispersion equation because it expresses
the nonlinear frequency dependence of β x . Both equation (12) and (13) are
expressions for the transverse resonance condition which requires the
same value for the longitudinal wave impedance looking straight down to
the interface (z = h) (14) as for the longitudinal wave impedance looking
straight up [7, p. 12-6]. Hence, there will be no reflection in the equivalent
transmission line of the layer structure (Fig. 3.7).

Looking straight down from medium 2 to the interface, the longitudinal
surface impedance is (for a definition see Section 5.3.2)

Z E
H

E z h
H z h

js
j

j js
js

t

x

y

z z
�

�= − = − =
=

= −
+

=
−

2

2

2

2 2

2

2 2

( )
( ) σ ωε ωε σ

. (14)

The minus sign in (14) originates from the fact that the Poynting vector
� � �

S E Hx y= ×2 2  is in the positive z-direction, whereas Zs�  is the surface
impedance at the interface, looking in the negative z-direction.

The value of the transversal surface impedance is undefined.
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3.4.3 H-Type Plane Surface Waves along a Coated, Electric Perfectly
Conducting Plane

A suitable Hertz function for medium 1 that satisfies the boundary condition
E at zy = =0 0
is ( )∏ = −

1 1 1A s z ez
j xxsin β . (15)

The factor ( )sin s zz1  may be interpreted as a standing wave in the z-
direction.

Introducing (15) into (3) results in
( ) ( )H A k s s z ez z z

j xx
1 1 1

2
1

2
1= − −sin β , (16a)

( )H j A s s z ex x z z
j xx

1 1 1 1= − −β βcos , (16b)
Hy1 0= , (16c)
Ez1 0= , (16d)
Ex1 0= , (16e)

( )E A s z ey x z
j xx

1 1 1 1= −β ωµ βsin . (16f)

Recalling (2.13)
s k s kz x z x1

2
1
2 2

1 1
2 2= − ⇒ = + −β β . (17)

It is only for a matter of convenience that sz1 is chosen to equal the positive
square root. Choosing the negative square root would have no effect on the
results.

A suitable Hertz function for medium 2 that satisfies the boundary condition
� � �

E H when z= = → +∞0
is ( )∏ = − − −

2 2
2A e ejs z h j xz xβ . (18)

For sz2, the same reasoning applies as in the previous section.
Hence, surface wave solutions are obtained by letting Re( )jsz2 0≥  or

( )js sign k kz x x2
2

2
2 2

2
2= −





−Re β β . (19a)

To obtain leaky wave solutions, let

( )js sign k kz x x2
2

2
2 2

2
2= − −





−Re β β . (19b)

Introducing (18) into (3) leads to
( ) ( )H A k s e ez z

js z h j xz x
2 2 2

2
2

2 2= − − − − β , (20a)
( )H A s e ex x z

js z h j xz x
2 2 2

2= − − − −β β , (20b)
Hy2 0= , (20c)
Ez2 0= , (20d)
Ex2 0= , (20e)

( )E A e ey x
js z h j xz x

2 2 2
2= − − −β ωµ β . (20f)
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The tangential components of both 
�

E  and 
�

H are continuous across the
interface of two media and therefore
H H at z hx x1 2= =

( )⇒ = −A s s h jA sz z z1 1 1 2 2cos , (21)

as well as E E at z hy y1 2= =

( )⇒ =µ µ1 1 1 2 2A s h Azsin . (22)

Note that (22) and (21) would have resulted in a set of contradictory
equations, if 

�

∏  were chosen in any direction other than the z-direction.

Dividing (22) by (21) and multiplying both sides by jω  yields

( )j
s

s h j
jsz

z
z

ωµ ωµ1

1
1

2

2

tan = − . (23)

Substituting (17) and (19a) into (23) results in the following expression for
H-type surface waves

( ) ( )
j
k

h k j

sign k kx
x

x x

ωµ
β

β ωµ

β β
1

1
2 2 1

2 2 2

2
2
2 2

2
2−

− = −
−





−
tan

Re
. (24)

This dispersion equation is transcendental and can therefore only be solved
numerically for β x . Both equation (23) and (24) are expressions for the
transverse resonance condition which requires the same value for the
transversal wave impedance looking straight down to the interface (z = h)
(25) as for the transversal wave impedance looking straight up [7, p. 12-6].
Hence, there will be no reflection in the equivalent transmission line of the
layer (Fig. 3.7).

Looking straight down from medium 2 to the interface, the transversal
surface impedance is (for a definition see Section 5.3.2)

Z E
H

E z h
H z h s

j
jsst

t y

x z z

= =
=
=

= − = −
�

2

2

2

2

2

2

( )
( )

ωµ ωµ . (25)

In (25), the Poynting vector 
� � �

S E Hy x= ×2 2  is in the negative z-direction, the
same direction used for determining Zst . Hence, no change in sign is
needed as in (14).

The value of the longitudinal surface impedance is undefined.
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3.4.4 High-Frequency Solution for E-Type and H-Type Plane Surface
Waves along a Coated, Electric Perfectly Conducting Plane

The transcendental equations (12) and (23) will now be solved in the limit
case when the frequency f → +∞ . The characteristics of a surface wave
are primarily determined by the quantities β x  and jsz2, the phase constant
in the propagation direction and the decay in the direction perpendicular to
the material interface, respectively.

Applying (2.13) twice gives the relation between sz2 and sz1

s s k k k kz1 z x x
2

2
2

1
2 2

2
2 2

1
2

2
2− = − − + = −β β

⇒ = − +s k k sz1 z
2

1
2

2
2

2
2 . (27)

sz1h appears as the argument of a tangent function in the dispersion
equation of both E-type as H-type surface waves. A tangent function takes
on every positive value in the interval [0,π/2[ and every negative value in
]π/2,π]. Consequently, the first root of dispersion equation (12), which
corresponds to the fundamental E-type mode, occurs at 0 21< <s hz π /
⇒ < <0 21s hz π / . Similarly, the first root of dispersion equation (23),
which corresponds to the fundamental H-type mode, occurs at
π π/ 2 1< <s hz  ⇒ < <π π/ ( ) /2 1h s hz . So for both wave types, sz1 will
always have a finite value.

By contrast, k k1
2

2
2−  will become infinite if f → +∞  because

( )k k r r r r1
2

2
2

1 1 2 2 0 0
2− = −ε µ ε µ ε µ ω .

Knowing the behaviour of sz1 and k k1
2

2
2−  for f → +∞ , equation (27) must

result in s jsz z2
2

2→ −∞ ⇒ → +∞  for f → +∞ . This means that the surface
wave field will not extend  outside the coating layer for extremely high
frequencies. Optical dielectric waveguides work on this principle.

Also, s kz1
2

1
2<<  for f → +∞ , because, as was shown before, sz1 remains

bounded for very high frequencies.
Hence, ( )β x f z f f

k s k2
1
2

1
2

1
2

→+∞ →+∞ →+∞
≡ − = . (28)

Thus at extremely high frequencies a surface wave behaves as a
inhomogeneous plane wave propagating entirely in medium 1. In general,
the wave will remain inhomogeneous because sz1 does not have to be zero
in (5b) and (16b).
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3.4.5 Low-Frequency Solution for E-Type Plane Surface Waves along
Thin Coatings on a Plane PEC

When the frequency is very low, the wave number k1 will be very small.
Since s kz x1 1

2 2= − β , sz1 will also be very small. The tangent function in
equation (12) can be approximated by its argument sz1h if also h is
electrically small, but not necessarily zero.

If this is the case, the dispersion equation for E-type surface waves (12)
reduces to

s h
j

js
j

z

f

z

f

1
2

1 1 0

2

2 2 0
σ ωε σ ωε+

=
+

→ →

. (29)

Raising the power of (29), substituting (27) and rewriting gives

( ) ( ) ( )h j s j k k sz
f

z
f

2
2 2

2
1

2

0
2 2

2
1
2

2
2

1
2

0
σ ωε σ ωε+ = + − −

→ →

( ) ( )
( ) ( )

⇒ =
+ −

+ + +→

→

s
j k k

j h j
z f

f

1
2

0

1 1
2

1
2

2
2

1 1
2 2

2 2
2

0

σ ωε

σ ωε σ ωε
. (30)

Substitute (30) into (6) to get

( ) ( )
( ) ( )

β
σ ωε

σ ωε σ ωε
x f

f

k
j k k

j h j→

→

= −
+ −

+ + +0 1
2 1 1

2
1
2

2
2

1 1
2 2

2 2
2

0

( ) ( )
( ) ( )

⇒ =
+ + +

+ + +→

→

β
σ ωε σ ωε

σ ωε σ ωε
x f

f

h j k j k

j h j0

2
2 2

2
1
2

1 1
2

2
2

1 1
2 2

2 2
2

0

(31)

Moreover, if the coating is extremely thin ( )h → 0 , (31) simplifies to
β x f

h f
k→

→ →
=0

0 2 0
(32)

and jsz2 0→ .

This means that at very low frequencies and when the coating is extremely
thin, the propagating wave will no longer be an inhomogeneous plane
surface wave but a homogeneous plane TEM-wave propagating entirely in
medium 2. The wave will be homogeneous in this limit case because along
a perfect electric conductor (PEC), the tangential components of an E-field
are always zero.

A similar solution for H-type surface-waves along an electrically thin coating
on a perfectly plane conductor does not exist. An explanation for this will be
given in the next section.
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3.4.6 Some Properties of Plane Surface Waves along a Coated, Electric
Perfectly Conducting Plane

An important feature of surface waves is the fact that the type of surface
wave that will propagate along a coated structure, is entirely determined by
the surface impedance at the material interface of the structure.

For E-type surface waves, the expression found for the longitudinal surface
impedance was (14)

Z j js
j

which iss
z

�
=

−
≥2

2 2

0
ωε σ

, .

This implies that the longitudinal surface impedance has to be inductive for
E-type surface waves to propagate along a coated PEC.
Expression (14) can be rewritten, by making use of equation (12), in a form
comparable with the input impedance of a shorted transmission line
[6, p. 503]

( ) ( )Z s
j

s h j s
j

s hs
z

z
z

z�
= −

+
=

−
1

1 1
1

1

1 1
1σ ωε ωε σ

tan tan . (33)

Therefore, in order to obtain an inductive surface impedance, the electrical
height of the coating must be such that

( )n s h nzπ π≤ < +1 2 1
2

(34)

where n is a positive integer and sz
z

1
1

2= π
λ

.

n+1 is also the total number of modes that may exist along a PEC with a
given coating of height h. Note that only the fundamental E-type mode has
no low-frequency cutoff. It is worth pointing out that below the cutoff
frequency a surface wave does not become evanescent but ceases to exist
altogether [7, p. 12-7].

The only wave able to propagate along the coated structure is a vertically
polarized TEM-wave when s h nz1 = π . This wave can be seen as a
degenerate form of an E-type surface wave. The phase constant β x  will
equal k2 in this case and jsz2 0→ .
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Likewise, the expression for the transversal surface impedance associated
with H-type surface waves is (25)

Z j
js

which isst
z

= − <ωµ2

2

0, .

This means that the transversal surface impedance has to be capacitive in
order to have H-type surface wave propagation.
By virtue of (23), (25) becomes

( )Z j
s

s hst
z

z=
ωµ1

1
1tan . (35)

Hence, the constraints for the height h of the coating are

( ) ( )2 1
2

11n s h nz+ ≤ < +π π (36)

where n is a positive integer and sz
z

1
1

2= π
λ

.

n+1 is also the total number of modes that may exist along a PEC with a
given coating of height h. Note that all H-type modes, even the lowest order
mode, have low-frequency cutoff. This is why one should refrain from
calling the lowest H-type mode the fundamental H-type mode. However, the
lowest order E-type surface wave mode is the fundamental mode. All this
can be explained by the fact that this study deals with surface waves along
a coated, electric perfectly conducting plane and not a coated, magnetic
perfectly conducting plane.

The only wave able to propagate along the coated structure is a horizontally

polarized TEM-wave when ( )s h nz1 2 1
2

= + π .

This wave can be seen as a degenerate form of an H-type surface wave.
The phase constant β x  will equal k2 in this case and jsz2 0→ .

In the case of a coated plane PEC, the fundamental E-type mode is usually
called the TM0 mode. Whereas the lowest H-type is labelled as the TE1
mode. This somewhat peculiar numbering system originates from the mode
numbering in plane dielectric slab waveguides [3, pp. 712-716].

In contrast to ordinary metallic waveguides, only a finite number of discrete
surface wave modes (i.e. n+1 modes) may exist at any given frequency.
As shown in the preceding sections it is necessary that k1 > k2 for surface
wave propagation to occur.

Both E-type and H-type surface waves can also be supported by a
corrugated surface with thin metal walls and a suitable artificial surface
impedance [3, pp. 708-712]. Corrugated surfaces with thick metal walls will
briefly be discussed in Chapter 5.
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3.4.7 The Continuous Eigenvalue Spectrum and Improper Solutions

Guiding structures may be classified into closed and open types. A closed
guiding structure possesses a finite cross section which is bounded by wall
that are impermeable to radiation and confine the electromagnetic field to
the interior of the waveguide. The field inside a closed guiding structure
may be decomposed into a complete set of discrete normal modes each of
which individually satisfies the relevant boundary conditions [8, p.155].

In contrast to closed waveguides, open guiding structures do not possess
walls completely impermeable to radiation and, therefore, power flow and
stored energy are not confined to the inside of the guiding structure. The
radiated field is represented by a continuous spectrum of modes which on
open structures appears in addition to the discrete mode spectrum. The
continuous eigenvalue spectrum of planar structures consist of all
homogeneous and inhomogeneous standing plane waves that individually
satisfy the boundary conditions with a continuous range of phase constants
such that − ∞ < ≤βx k2

2
2  [8, p. 156]. On the other hand, the discrete

spectrum (also termed proper) contains only a finite number of modes that
decay at infinity. The proper discrete eigenvalue spectrum corresponds to
the various surface waves supported by the structure and which are
solutions of the dispersion equations (12) and (23). In contrast to a closed
guiding structure, the dispersion equations of an open structure may
possess, in addition to the proper solutions, other discrete solutions, termed
improper, that correspond to fields which grow away from the structure and
violate the radiation condition. The improper discrete eigenvalue spectrum
represents the various leaky waves which are, as was mentioned before,
improper solutions to the dispersion equations. The totality of the proper
discrete eigenvalue spectrum and the continuous eigenvalue spectrum
corresponds to a complete set of eigenfunctions along which the physical
field along an open structure may be expanded.

Note that in the previous discussion the more general term “eigenvalue” is
used instead of the word “root”. Here is explained why. Roots are solutions
to a dispersion equation, whereas eigenvalues are solutions to Hertz’s
vector wave equation (2.1), which is in fact an eigenvalue equation. All
roots of a dispersion equation are eigenvalues of (2.1), but not all
eigenvalues of (2.1) are roots of a dispersion equation.
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To find the complete set of eigenvalues in which the field of an arbitrary
source may be expanded, consider a plane wave, not necessary
homogeneous, incident at an angle θ2i on a coated PEC, as shown in
Figure 3.6 for a parallel polarized plane wave. Remember that an
inhomogeneous plane wave is represented by an imaginary angle of
incidence.

Figure 3.6: A parallel polarized plane wave incident at an angle θ i  on a
coated PEC

In the coating, a standing wave may exist due to the reflections at the
electric perfectly conducting plane and the material interface. There may
also be a reflected wave above the coating. If this is the case, the resulting
field above the interface will be that of a standing wave. Note that in these
statements no restrictions are put on the value of the wave numbers k1 and
k2. This means that even if k2 > k1, the resulting field in medium 2 will still be
a standing wave, not a leaky wave. At this point, it is interesting to compare
the situation in Figure 3.6 with that of Figure 3.2 where in medium 2 a leaky
wave will exist when k2 > k1. The big difference between Figure 3.6 and
Figure 3.2 is that in Figure 3.6 the incident wave comes from medium 2
while in Figure 3.2 the wave is incident from medium 1. This explains the
absence of leaky wave modes in Figure 3.6, even if k2 > k1.

The transverse field Fy in the two regions may be represented as follows
( ) ( )[ ][ ]F A jk z xy i i2 2 2 2 2= − − ⋅ + ⋅exp cos sinθ θ

( ) ( ) ( )[ ][ ]+ − − + ⋅RA jk z h xi i2 2 2 22exp cos sinθ θ , (37a)

( ) ( )( )[ ]F A k z jk xy t t1 1 1 1 1 1= ⋅ ⋅ − ⋅cos cos exp sinθ θ (37b)
where
Fy = Ey for perpendicular polarized waves and
Fy = Hy for parallel polarized waves.

It may be necessary to shed some light on the origin of these expressions.
The field in medium 2 is written explicitly as the combination of an incident

x

z

h2h

θ1t

θ 2i

σ = +∞

� �

F Hy y=

�

E

k1

k2
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wave and a reflected wave. The complex amplitude ratio between the
reflected and the incident wave is given by the reflection coefficient R. The
field in medium 1 is a standing wave. In both media the wave vector 

�

k  is
decomposed into its components along the x- and z-axis

( )
� �

k kx = sin θ ;   ( )
� �

k kz = cos θ .

Note that in (37) the phase is referenced to the phase at the point (0,0,h).
Hence, the phase of the reflected wave equals zero in the image point
(0,0,-h).

The boundary conditions require the tangential field intensities to be
continuous across the material interface. They can easily be imposed by
making use of a transverse equivalent network (Fig. 3.7) [8, pp. 156-162].
This eliminates the need to deal with the field expressions (37) directly. The
dispersion equations and hence the discrete eigenvalue spectrum can be
obtained by applying the transverse resonance. The transverse resonance
condition requires that at any point along the equivalent transmission line,
the sum of the impedance looking in one direction and the impedance
looking into the other direction equals zero or
Z Z↑ + ↓ = 0 which is equivalent to Y Y↑ + ↓ = 0 [8, p. 158]. (38)

Figure 3.7: Transmission-line equivalent of a coated PEC

In Figure 3.7, Zc1 is the characteristic wave impedance of the coating and
Zc2 the characteristic wave impedance of medium 2. For parallel polarized
incident waves these characteristic impedances are

( )Z E
Hc

x

y
t1

1

1
1 1/ / cos= = η θ  and ( )Z E

Hc
x

y
i2

2

2
2 2/ / cos= = η θ , (39)

whereas for perpendicular polarized incident waves

( )Z
E
Hc

y

x t
1

1

1

1

1
⊥ = =

η
θcos

 and ( )Z
E
Hc

y

x i
2

2

2

2

2
⊥ = =

η
θcos

. (40)

hZc1

Zc2

+∞

Z Zs↓ = − ↑
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The coating acts like a length of transmission line terminated by a short
circuit (Fig. 3.7). Hence, for parallel polarized waves the surface impedance
at height z = h is

( )[ ] ( ) ( )[ ]Z E z h
H z h

jZ hk j hks
x

y
c t t t� / / / /

( )
( )

tan cos cos tan cos= =
=

= =1 1 1 1 1 1 1θ η θ θ ,

(41)
whereas for perpendicular polarized waves

( )[ ] ( ) ( )[ ]Z
E z h
H z h

jZ hk j hkst
y

x
c t

t
t⊥ ⊥=

=
=

= =
( )
( )

tan cos
cos

tan cos1 1 1
1

1
1 1θ η

θ
θ .

(42)

Note that the surface impedance is a longitudinal impedance for parallel
polarized waves and a transversal impedance for perpendicular polarized
waves.

Applying the transverse resonance condition to (39) and (41), respectively
(40) and (42), results in the dispersion equations for E-type and H-type
surface waves, respectively. Moreover, the proper solutions to these
dispersion equations are poles of the reflection coefficient R, as will be
shown now.

For parallel polarized waves, R //  equals the current reflection coefficient Γi

because Fy = Hy in (37a), thus
( ) ( ) ( )[ ]
( ) ( ) ( )[ ]R Z Z

Z Z
j hk
j hki

c s

c s

i t t

i t t
/ / / /

/ / / /

/ / / /

cos cos tan cos
cos cos tan cos

= = −
+

=
−
+

Γ 2

2

2 2 1 1 1 1

2 2 1 1 1 1

�

�

η θ η θ θ
η θ η θ θ

. (43)

For perpendicular polarized waves, Fy = Ey and hence R ⊥  must equal the
voltage reflection coefficient Γv

( ) ( )[ ] ( )

( ) ( )[ ] ( )
R Z Z

Z Z

j hk

j hk
v

st c

st c

t
t

i

t
t

i

⊥ ⊥
⊥ ⊥

⊥ ⊥

= = −
+

=
−

+
Γ 2

2

1

1
1 1

2

2

1

1
1 1

2

2

η
θ

θ η
θ

η
θ

θ η
θ

cos
tan cos

cos

cos
tan cos

cos

. (44)
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A first group of solutions to (37a) and (37b) are the E-type surface wave
modes which are poles for the reflection coefficient R // . To see this, apply
the transverse resonance condition to (43)

( ) ( ) ( )[ ]R Z Z j hkc s i t t/ / / / / / cos cos tan cos→ ∞ ⇔ + = ⇔ + =2 2 2 1 1 1 10 0
�

η θ η θ θ .
(45)

In (45), let
( )s kz t1 1 1= cos θ (46)

( )⇒ = =
−

−





= −
+

j j
k

s

j
j

j
s s

jt z z
zη θ

η

µ

ε
σ
ω

ω µ ε
σ
ω

σ ωε1 1
1

1
1

1

1
1

1 1
1

1
1

1 1

cos (47)

and ( ) ( )s k js
jz i i
z

2 2 2 2 2
2

2 2

= ⇒ =
+

cos cosθ η θ
σ ωε

. (48)

Substituting (46), (47) and (48) into (45) results in

( )s
j

s h js
j

z
z

z1

1 1
1

2

2 2σ ωε σ ωε+
=

+
tan .

This is the dispersion equation for E-type surface wave modes (12) which
was derived earlier in Section 3.4.2. The here presented alternative method
for finding a dispersion equation might be somewhat quicker, it does not
provide the insight into the actual field distributions of the propagating
wave.



48

H-type surface wave modes are also solutions to (37a) and (37b) and at the
same time poles for the reflection coefficient R⊥ . To see this, apply the
transverse resonance condition to (44)

( ) ( )[ ] ( )R Z Z j hkst c
t

t
i

⊥ ⊥ ⊥→ ∞ ⇔ + = ⇔ + =2
1

1
1 1

2

2

0 0η
θ

θ η
θcos

tan cos
cos

.

(49)

In (49), let
( )s kz t1 1 1= cos θ (50)

( )⇒ = = −



 −

=j j k
s

j j
j s

j
st z z z

η
θ

η
ω µ ε

σ
ω

µ

ε
σ
ω

ωµ1

1

1 1

1
1 1

1 1

1
1 1

1

1

1
cos

(51)

and ( ) ( )s k j
jsz i

i z
2 2 2

2

2

2

2

= ⇒ =cos
cos

θ η
θ

ωµ . (52)

Substituting (50), (51) and (52) into (49) results in

( )j
s

s h j
jsz

z
z

ωµ ωµ1

1
1

2

2

tan = − .

This is the dispersion equation for H-type surface wave modes (23) which
was derived earlier in Section 3.4.3.

Although up to now surface waves have been considered to be produced
by the pole in the expression for the reflection coefficient, they may equally
be seen as being produced by a zero of the reflection coefficient. Whether
a surface wave mode should be associated with a zero or a pole of the
reflection coefficient depends on the fact whether the field above the
dielectric is considered to be a reflected wave or an incident wave, because
in case of the latter, (48) and (52) change to

( ) ( )s k js
jz i i
z

2 2 2 2 2
2

2 2

= − ⇒ = −
+

cos cosθ η θ
σ ωε

and ( ) ( )s k j
jsz i

i z
2 2 2

2

2

2

2

= − ⇒ = −cos
cos

θ η
θ

ωµ , respectively.

The characteristic wave impedances Zc2// and Zc2⊥ change accordingly, but
the dispersion equation remains the same.
To summarize, if the field in medium 2 is considered as an incident wave,
the solution corresponds to a zero of the reflection coefficient and not a
pole, as is the case if the field is considered as a reflected wave [3, p.718].
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The system of equations (37a) and (37b) has also other solution types in
addition to the previously found surface wave solutions. Standing waves
along the z-axis exists for all real angles of incidence 0 902≤ ≤ °θ i

( )⇒ ≤ = ≤0 2
2

2
2 2

2 2
2s k kz icos θ

⇒ ≤ = − ≤0 2
2
2

2
2

2
2β x zk s k

⇒ ≤ ≤0 2β x k . (53)

A standing wave solution along the z-axis will also exist for imaginary
angles of incidence

( )s k k
k s

j jz i

x z
x

2
2

2
2 2

2 2
2

2
2
2

2
2 0= >

= −




⇒ − ∞ < <
cos θ

β
β . (54)

The homogeneous and inhomogeneous standing wave solutions given in
(53) and (54), respectively, form the continuous eigenvalue spectrum.
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3.4.8 Traveling Waves Categorized by Surface Impedance

Both the proper and the improper discrete eigenvalue spectra represent
guided wave modes, which are often called traveling waves. These plane
waves are characterized by the orientation of 

�

α 2  and 
�

β 2  in medium 2,
which in turn depends on the sign of the real and imaginary parts of the
surface impedance [8, pp. 164-167]1. This relation will be explored in more
detail now.

The complex wave vector 
�

k 2  in medium 2 can be decomposed into its
components along the x- and the z-axis

( )
� �

k kx i2 2 2= sin θ ;   ( )
� �

k kz i2 2 2= cos θ
where k j sz z z z2 2 2 2= − =β α . (55)

Substituting (55) into the expression for the surface impedance previously
obtained for E-type plane surface waves (14), gives

Z R jX js
j

s
j

j
js s s

z z z z
� � �

= + = −
+

= −
−

=
− +

−
2

2 2

2

2 2

2 2

2 2σ ωε ωε σ
β α

ωε σ
. (56)

This results in the following set of rules for parallel (TM) polarized (E-type)
traveling waves

( ) ( )sign sign Rz sβ 2 = −
�

, (57a)

( ) ( )sign sign Xz sα 2 =
�

. (57b)

Rewriting the surface impedance expression for H-type plane surface
waves (25) as a surface admittance and substituting (55) yields

Y G jB s j
st st st

z z z= + = − =
− +2

2

2 2

2ωµ
β α

ωµ
. (58)

Hence, for perpendicular (TE) polarized (H-type) traveling waves
( ) ( )sign sign Gz stβ 2 = −   and (59a)

( ) ( )sign sign Bz stα 2 = . (59b)

1 In reference [8], a rather unusual sign convention is used in which -j is
replaced by +i.
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The classification of traveling wave types according to the surface
impedance is shown in Figure 3.8 and Figure 3.9.
(For more information, see [8, pp. 166-167].)

Figure 3.8: Classification of the proper guided waves along a coated plane
PEC (Im(k2) = 0)

Figure 3.9: Classification of the improper guided waves along a coated
plane PEC (Im(k2) = 0)
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3.4.9 The Mapping of Fast and Slow Traveling Waves onto the w-Plane

Up to now, little has been said about the requirements for fast and slow
traveling wave propagation. This is mainly due to the fact that sz2 has thus
far always been expressed as a dual-valued function of βx. This section
explains how sz2 can be transformed into a single-valued function of a new
complex variable w.

Fast electromagnetic waves are waves with a phase velocity vp greater than
c0, whereas slow electromagnetic waves are waves with vp smaller than c0.
c0 is the velocity of light in a vacuum, i.e. 299792458m/s.

The phase velocity of a wave is
( )vp =

Re β
ω

. (60)

In view of (60), alternative definitions for fast and slow waves are
β < k0 and β > k0, respectively.
Note that it is only useful to talk about fast and slow waves when k2 = k0.

Introducing the trigonometric transformation (Fig. 3.10) [8, pp. 171 & 241]
( )β x k w= 0 sin     where w j= +ξ η , (61)

results in a single-valued expression for sz0

( ) ( )β
β

x

x z
z

k w
k s

s k w
=
= +





⇒ =0

0
2 2

0
2 0 0

61
213

sin ( )
( . )

cos . (62)

Figure 3.10: Graphical representation of the trigonometric transformation

The real part and imaginary part of the complex phase constant βx can be
written in terms of ξ  and η.

( ) ( )β ξ ηx k w k j= = +0 0sin sin

 ( ) ( ) ( ) ( )[ ]= +k j j0 sin cos cos sinξ η ξ η    [9, p. 15]

 ( ) ( ) ( ) ( )[ ]= +k j0 sin cosh cos sinhξ η ξ η    [9, p. 31] (63)

 ( )= ′ − ′′ = ′ −β β β αx x x xj j .

Likewise,

w

sz0

βx

k0
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( ) ( )s k w k jz0 0 0= = +cos cos ξ η

  ( ) ( ) ( ) ( )[ ]= −k j j0 cos cos sin sinξ η ξ η    [9, p. 15]

  ( ) ( ) ( ) ( )[ ]= −k j0 cos cosh sin sinhξ η ξ η    [9, p. 31] (64)

  ( )= −β αz zj0 0 .

All possible traveling wave types (backward and forward propagating) can
now be mapped into a strip − ≤ <π ξ π  of the w-plane (Fig. 3.11) [8, p.
174].

 
Figure 3.11: Traveling wave types as a function of eigenvalue location in
the w-plane

Note that if in (64): η = ⇒ =0 00Im( )sz , which corresponds to a homo-
geneous wave. This confirms that a complex angle of incidence implies an
inhomogeneous incident wave (in fact, w could be replaced by θ).

Finally, the boundary between fast and slow waves is given by
( ) ( ) ( )v
kp

x= = = ±
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sin cosh
β

ξ η
0
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3.4.10 Numerical Examples

Now will be shown how the discrete eigenvalue spectrum can be found
graphically using MathcadTM Plus 6.0 Professional (1986-1995 MathSoft,
Inc.). Only E-type waves are investigated. The dispersion equation of the
proper E-type traveling waves (surface waves and complex waves) (13) is
rewritten in a form more suitable for numerical analysis

( ) ( ) ( )
( )F

k
j

h k
k

k

k
jEP x

x
x

x

x

xβ
β

σ ωε
β

β

β

β
σ ωε

=
−

+
− −

−

−
⋅

−
+

=1
2 2

1 1
1
2 2

2
2
2

2
2
2

2
2
2

2 2

0tan
Re

Re
. (65)

Similarly, for the improper traveling waves
(leaky waves and non-contributing waves)
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The eigenvalues of the forward propagating E-type traveling wave modes
can be found graphically by plotting equations (65) and (66) respectively in
function of the complex phase constant β x  (see Fig. 3.12). An eigenvalue
on this plot is characterized by a null (black dot). It turns out that the nulls
are often accompanied by sharp peaks in their immediate neighbourhood.
Nulls are very localized features and can therefore easily be overlooked
because computers can plot the value of a function only in a finite number
of points. One way to prevent eigenvalues from being overlooked, is to
zoom in on those regions of the plot where eigenvalues may be expected.

Another option is to use a numerical root finder to locate the eigenvalues.
Each root finding algorithm requires one or more start values. However,
when there is more than one mode propagating, it is often difficult to direct
the root finder towards one particular eigenvalue. The Newton-Raphson
algorithm, as implemented in the root finder of MathcadTM is more prone to
this defect than the secant algorithm for example. With the secant root
finding method, an eigenvalue can be bracketed by appropriately specifying
the two start values of the algorithm. Reference [10] describes this method
in detail.

Another very elegant graphical solution method has been described in
[3, pp. 712-716]. Unfortunately, this method is not applicable for lossy
media.
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The inability to annotate graphs in MathcadTM, made it necessary to provide
additional information on these plots in the form of Figure 3.12.

 
Figure 3.12: Interpretation of the complex β x -plane plots generated by
MathcadTM

Remember that is not possible to show the eigenvalues of the proper
traveling wave modes and those of the improper traveling wave modes
simultaneously. Improper wave modes are located in the upper half of the
complex βx-plane and proper wave modes in the lower half of the plane.
Thus, for each plot produced by MathcadTM, only one half is relevant, the
other half is usually a mirror image and should be ignored.

Also, for all forward propagating lossless surface wave modes:
 k kx2 1< ≤β  and the lowest order surface wave mode has the highest

( )Re β x  (i.e. the slowest wave).

( )Im β β αx x x= − ′′ = −

( )Re β βx x= ′

�: Improper Mode
O: Local Maximum

�: Proper Mode
O: Local Maximum

( )Re k1

Lowest Order
Proper Mode
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EXAMPLE 1
This first example shows that only one E-type surface wave mode can
propagate in a plane layer of 6mm thick polyethylene (PE) on a PEC. This
mode is represented by a black dot (null) on the complex β x -plane plot. A
side view of this plot is also given. (See also Fig. 3.13.)

Figure 3.13: Interpretation of the side view of the complex β x -plane plot
with one E-type surface wave mode present

EXAMPLE 2
The complex β x -plane plot of this example clearly shows that increasing
the layer thickness to 15mm results in an additional proper E-type mode.

EXAMPLE 3
Further increasing the thickness to 80mm gives a multitude of proper
waves. They are all surface wave modes with Re( ) Re( ) Re( )k kx2 1< ≤β .

EXAMPLE 4
The same structure of Example 1 is now solved for improper E-type modes.
Only one non-contributing wave mode is present in the upper half of the
complex βx-plane. The lower half of the plot is a mirror image and should be
ignored.

( )Im β β αx x x= − ′′ = −

( )Re β βx x= ′

FES

( )Re k1( )Re k 2

( )Re β x

of
SW mode
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EXAMPLE 5
With a coating of 15mm PE, one can discern two improper E-type modes.
Ignore the lower half of the plot.

EXAMPLE 6
As the thickness of the coating further increases (here to 80mm), more and
more improper E-type modes start to appear on the upper half of the plot.
The lower half should be ignored.

EXAMPLE 7
This example shows the proper E-type waves along a 0.75mm thick sheet
of metal-backed Eccosorb GDS, a surface wave absorbing material
available from Emerson & Cuming.

EXAMPLE 8
The same configuration as in Example 7 is now solved for improper E-type
modes.

EXAMPLE 9
It is also very instructive to see what happens when more losses are
introduced into a relatively thick coating. From the plot can be inferred that
the attenuation is higher for the higher order surface wave modes. Some of
the higher order modes are fast waves and one null clearly stands out from
the rest. This null corresponds to the fast surface wave that will also exist
when the metal back plane is removed and the coating made infinitely thick.
(See also Section 3.6.)

EXAMPLE 10
The losses in the coating are apparently that high, that no improper wave
modes can be found in the upper half of the complex β x -plane plot.



Example 1: Plane Surface Waves along a Coated PEC
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.26 0.00091j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Enter the thickness of the coating:

h .0.006 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 315.075 0.063j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 209.585

rad
m
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E-type proper wave modes:

F EP β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EP β x β x =β x 258.189 0.045j

rad
m

=F EP β x 1.392 10 6 + 1.134 10 4 j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 0.078 150.785j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EP ,x y
log ..F EP Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EP Re(βx) [rad/m]
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B EP ,x y
..F EP Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

2 104

4 104

B EP

|FES|

00 210 258 315
Re(βx) [rad/m]
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Example 2: Plane Surface Waves along a Coated PEC
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.26 0.00091j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Enter the thickness of the coating:

h .0.015 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 315.075 0.063j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 209.585

rad
m
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E-type proper wave modes:

F EP β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EP β x β x =β x 212.793 0.02j

rad
m

=F EP β x 9.521 10 7 + 3.138 10 7 j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 0.114 36.811j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EP ,x y
log ..F EP Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EP Re(βx) [rad/m]
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Example 3: Plane Surface Waves along a Coated PEC
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.26 0.00091j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Enter the thickness of the coating:

h .0.080 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 315.075 0.063j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 209.585

rad
m
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E-type proper wave modes:

F EP β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EP β x β x =β x 264.487 0.072j

rad
m

=F EP β x 2.415 10 4 4.666 10 4 j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 0.118 161.331j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EP ,x y
log ..F EP Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EP Re(βx) [rad/m]
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Example 4: Plane Improper Waves along a Coated PEC
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.26 0.00091j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Enter the thickness of the coating:

h .0.006 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 315.075 0.063j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 209.585

rad
m
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E-type improper wave modes:

F EI β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EI β x β x =β x 201.038 + 141.062j

rad
m

=F EI β x 3.234 10 4 + 1.567 10 4 j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 205.872 + 137.75j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EI ,x y
log ..F EI Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EI Re(βx) [rad/m]
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Example 5: Plane Improper Waves along a Coated PEC
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.26 0.00091j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Enter the thickness of the coating:

h .0.015 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 315.075 0.063j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 209.585

rad
m
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E-type improper wave modes:

F EI β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EI β x β x

not converging

=β x 262.33 0.032j
rad
m

=F EI β x 0.282 203.403j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 0.053 + 157.769j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EI ,x y
log ..F EI Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EI Re(βx) [rad/m]
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Example 6: Plane Improper Waves along a Coated PEC
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.26 0.00091j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Enter the thickness of the coating:

h .0.080 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 315.075 0.063j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 209.585

rad
m
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E-type improper wave modes:

F EI β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EI β x β x =β x 113.224 29.77j

rad
m

=F EI β x 7.483 10 7 2.621 10 6 j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 179.843 + 18.743j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EI ,x y
log ..F EI Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EI Re(βx) [rad/m]
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Example 7: Proper Waves along Metal-Coated Eccosorb GDS
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 7.4 0.15j µ r1 1.4 0.48j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..8.6 109 Hz ω ..2 π f =ω 5.404 1010 Hz λ 0
c 0
f

=λ 0 0.035 m

Enter the thickness of the coating:

h .0.00075 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 180.243
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 587.412 104.031j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 180.243

rad
m
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E-type proper wave modes:

F EP β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EP β x β x =β x 182.647 2.328j

rad
m

=F EP β x 2.203 10 4 + 6.845 10 4 j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 13.179 32.262j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EP ,x y
log ..F EP Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 200 400

200

100

0

100

200

B EP Re(βx) [rad/m]
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Example 8: Plane Improper Waves along Metal-Backed
Eccosorb GDS

Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 7.4 0.15j µ r1 1.4 0.48j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..8.6 109 Hz ω ..2 π f =ω 5.404 1010 Hz λ 0
c 0
f

=λ 0 0.035 m

Enter the thickness of the coating:

h .0.00075 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 180.243
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 587.412 104.031j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 180.243

rad
m
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E-type improper wave modes:

F EI β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EI β x β x

not converging

=β x 383.827 52.015j
rad
m

=F EI β x 140.648 752.295j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 58.726 + 339.969j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EI ,x y
log ..F EI Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 200 400

200

100

0

100

200

B EI Re(βx) [rad/m]
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Example 9: Plane Proper Waves along Thick Lossy Materials
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.26 0.5j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Enter the thickness of the coating:

h .0.080 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 316.974 34.645j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 209.585

rad
m
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E-type proper wave modes:

F EP β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EP β x β x =β x 175.338 5.359j

rad
m

=F EP β x 7.218 10 7 + 3.616 10 6 j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 115.228 8.154j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EP ,x y
log ..F EP Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EP Re(βx) [rad/m]
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Example 10: Improper Waves along Thick Lossy Materials
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.26 0.5j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Enter the thickness of the coating:

h .0.080 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 316.974 34.645j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 209.585

rad
m
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E-type improper wave modes:

F EI β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EI β x β x

not converging

=β x 263.279 17.322j
rad
m

=F EI β x 192.578 291.527j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 28.342 + 160.914j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EI ,x y
log ..F EI Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EI Re(βx) [rad/m]
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3.5 Plane Surface Waves along a Planar Three-Layer Structure

3.5.1  Introduction

The propagation of plane surface waves along the general planar three-
layer topology of Figure 3.14 will be examined now. The structure consist of
two half spaces with in between a plane layer of finite height h. All three
media are assumed to be homogeneous, linear and isotropic.

 

y
x

z

Figure 3.14: The planar three-layer structure; all three media are assumed
to be homogeneous, linear and isotropic

For surface propagation it is necessary that both k1 and k3 are greater than
k2. These are the very same requirements to obtain a dielectric wave-
guides. In fact, the waves propagating in dielectric waveguides (e.g. optical
fibres) are surface waves. The structure of Figure 3.14 can also be used to
model VLF-propagation or VHF-ducts.

ε µ σ1 1 1, ,

ε µ σ2 2 2, ,

ε µ σ3 3 3, ,

z = 0

z = h
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3.5.2 E-Type Plane Surface Waves along a Three-Layer Structure

A suitable Hertz function for medium 1 that satisfies the boundary condition
� � �

E H when z= = → −∞0
is ∏ = + −

1 1
1A e ejs z j xz xβ . (67)

The factor e js zz+ 1  may be interpreted as a wave propagating in the negative
z-direction with phase constant s s jsz z z1 1 1= ′ − ′′ . The traveling wave field will
show attenuation in the negative z-direction (i.e. be proper) when
′′ > ⇒ <s sz z1 10 0Im( ) . If on the other hand Im( )sz1 0> , the wave will be an

improper traveling wave and the radiation condition violated.
Hence, proper wave solutions are only obtained by letting

( )js sign k kz x x1
2

1
2 2

1
2= −





−Re β β . (68a)

To obtain improper wave solutions, let

( )js sign k kz x x1
2

1
2 2

1
2= − −





−Re β β . (68b)

Introducing (67) into (2) leads to
( )E A k s e ez z

js z j xz x
1 1 1

2
1

2 1= − + − β , (69a)

E A s e ex x z
js z j xz x

1 1 1
1= + −β β , (69b)

Ey1 0= , (69c)
Hz1 0= , (69d)
Hx1 0= , (69e)

( )H j j A e ey x
js z j xz x

1 1 1 1
1= + + −β σ ωε β . (69f)

A suitable Hertz function for medium 2 that can satisfy any boundary
condition is

( ) ( )[ ]∏ = + −
2 2 2 2 2A s z A s z ea z b z

j xxcos sin β . (70)
In general, this corresponds to a standing wave.

Recalling (2.13)
s k s kz x z x2

2
2
2 2

2 2
2 2= − ⇒ = + −β β . (71)

It is only for a matter of convenience that sz2 is chosen to equal the positive
square root. Choosing the negative square root would have no effect on the
results.

Introducing (70) into (2) results in
( ) ( ) ( )[ ]E k s A s z A s z ez z a z b z

j xx
2 2

2
2

2
2 2 2 2= − + −cos sin β , (72a)

( ) ( )[ ]E j s A s z A s z ex x z a z b z
j xx

2 2 2 2 2 2= − −β βsin cos , (72b)
Ey2 0= , (72c)
Hz2 0= , (72d)
Hx2 0= , (72e)

( ) ( ) ( )[ ]H j j A s z A s z ey x a z b z
j xx

2 2 2 2 2 2 2= + + −β σ ωε βcos sin . (72f)
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A suitable Hertz function for medium 3 that satisfies the boundary condition
� � �

E H when z= = → +∞0
is ( )∏ = − − −

3 3
3A e ejs z h j xz xβ . (73)

The factor ( )e js z hz− −3  may be interpreted as a wave propagating in the
positive z-direction with phase constant s s jsz z z3 3 3= ′ − ′′ . The traveling wave
field will show attenuation in the positive z-direction (i.e. be proper) when
′′ > ⇒ <s sz z3 30 0Im( ) . If on the other hand Im( )sz3 0> , the wave will be an

improper traveling wave and the radiation condition violated.
Hence, proper wave solutions are only obtained by letting

( )js sign k kz x x3
2

3
2 2

3
2= −





−Re β β . (74a)

To obtain improper wave solutions, let

( )js sign k kz x x3
2

3
2 2

3
2= − −





−Re β β . (74b)

Introducing (73) into (2) leads to
( ) ( )E A k s e ez z

js z h j xz x
3 3 3

2
3

2 3= − − − − β , (75a)
( )E A s e ex x z

js z h j xz x
3 3 3

3= − − − −β β , (75b)
Ey3 0= , (75c)
Hz3 0= , (75d)
Hx3 0= , (75e)

( ) ( )H j j A e ey x
js z h j xz x

3 3 3 3
3= + − − −β σ ωε β . (75f)

The tangential components of both 
�

E  and 
�

H are continuous across the
interface of two media and therefore
E E at zx x1 2 0= =
⇒ = −A s jA sz b z1 1 2 2 , (76)

as well as H H at zy y1 2 0= =

( ) ( )⇒ + = +σ ωε σ ωε1 1 1 2 2 2j A j A a . (77)

E E at z hx x2 3= =

( ) ( )[ ]⇒ − =js A s h A s h A sz b z a z z2 2 2 2 2 3 3cos sin , (78)

as well as H H at z hy y2 3= =

( ) ( ) ( )[ ] ( )⇒ + + = +σ ωε σ ωε2 2 2 2 2 2 3 3 3j A s h A s h j Aa z b zcos sin . (79)
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Rewriting (77)

A j
j

A a1
2 2

1 1
2=

+
+

σ ωε
σ ωε

and substituting the result into (76) gives
σ ωε
σ ωε

2 2

1 1
2 2 2 0+

+
+ =

j
j

s A js Az1 a z b . (80)

Rewriting (79)

( ) ( )[ ]A j
j

A s h A s ha z b z3
2 2

3 3
2 2 2 2=

+
+

+
σ ωε
σ ωε

cos sin

and substituting the result into (78) leads to

( ) ( )− +
+
+









js s h j

j
s s h Az z z z a2 2

2 2

3 3
3 2 2sin cosσ ωε

σ ωε

( ) ( )+ −
+
+









 =js s h

j
j

s s h Az z z z b2 2
2 2

3 3
3 2 2 0cos sin

σ ωε
σ ωε

. (81)

Equations (80) and (81) form a system of linear equations for the two
unknown factors A2a and A2b. The system is homogeneous, hence for non-
trivial solutions to exist, the coefficient determinant must be zero, that is

( ) ( )σ ωε
σ ωε

σ ωε
σ ωε

2 2

1 1
1 2 2

2 2

3 3
3 2

+
+

−
+
+











j
j

s js s h
j
j

s s hz z z z zcos sin

( ) ( )+ +
+
+









 =js js s h j

j
s s hz z z z z2 2 2

2 2

3 3
3 2 0sin cosσ ωε

σ ωε

( )⇒ +
+

− +
+











σ ωε
σ ωε

σ ωε
σ ωε

2 2

1 1
1 2

2 2

3 3
3 2

j
j

s js j
j

s s hz z z ztan

( )+ +
+
+









 =js js s h

j
j

sz z z z2 2 2
2 2

3 3
3 0tan

σ ωε
σ ωε

( )⇒ +
+

⋅ +
+

+






 = +

+
+ +

+








σ ωε
σ ωε

σ ωε
σ ωε

σ ωε
σ ωε

σ ωε
σ ωε

2 2

1 1

2 2

3 3
1 3 2

2
2 2

2 2

1 1
1

2 2

3 3
3

j
j

j
j

s s s s h js j
j

s j
j

sz z z z z z ztan .

(82)

Substituting (68a), (71) and (74a) into (82) results in the following ex-
pression for proper E-type traveling wave modes

( ) ( )− +
+

⋅ +
+

⋅ −




⋅ − ⋅ −




⋅ − + −











σ ωε
σ ωε

σ ωε
σ ωε

β β β β β2 2

1 1

2 2

3 3

2
1
2 2

1
2 2

3
2 2

3
2

2
2 2j

j
j
j

sign k k sign k k kx x x x xRe Re

( )⋅ − =tan h k x2
2 2β

( ) ( )k j
j

sign k k j
j

sign k kx x x x x2
2 2 2 2

1 1

2
1
2 2

1
2 2 2

3 3

2
3
2 2

3
2− +

+
⋅ −




⋅ − + +

+
⋅ −




⋅ −









β σ ωε

σ ωε
β β σ ωε

σ ωε
β βRe Re .

(83)

The nomenclature of symmetrical E-type modes (i.e. when k1 = k3) is
discussed in [3, pp. 712-716].
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3.5.3 H-Type Plane Surface Waves along a Three-Layer Structure

A suitable Hertz function for medium 1 that satisfies the boundary condition
� � �

E H when z= = → −∞0
is ∏ = + −

1 1
1A e ejs z j xz xβ . (84)

For sz1, the same reasoning applies as in the previous section.
Hence, proper wave solutions are obtained by letting Re( )jsz1 0≥  or

( )js sign k kz x x1
2

1
2 2

1
2= −





−Re β β . (85a)

To obtain improper wave solutions, let

( )js sign k kz x x1
2

1
2 2

1
2= − −





−Re β β . (85b)

Introducing (84) into (3) leads to
( )H A k s e ez z

js z j xz x
1 1 1

2
1

2 1= − + − β , (86a)

H A s e ex x z
js z j xz x

1 1 1
1= + −β β , (86b)

Hy1 0= , (86c)
Ez1 0= , (86d)
Ex1 0= , (86e)
E A e ey x

js z j xz x
1 1 1

1= + −β ωµ β . (86f)

A suitable Hertz function for medium 2 that can satisfy any boundary
condition is

( ) ( )[ ]∏ = + −
2 2 2 2 2A s z A s z ea z b z

j xxcos sin β . (87)
In general, this corresponds to a standing wave.

Recalling (2.13)
s k s kz x z x2

2
2
2 2

2 2
2 2= − ⇒ = + −β β . (88)

It is only for a matter of convenience that sz2 is chosen to equal the positive
square root. Choosing the negative square root would have no effect on the
results.

Introducing (87) into (2) results in
( ) ( ) ( )[ ]H k s A s z A s z ez z a z b z

j xx
2 2

2
2

2
2 2 2 2= − + −cos sin β , (89a)

( ) ( )[ ]H j s A s z A s z ex x z a z b z
j xx

2 2 2 2 2 2= − −β βsin cos , (89b)
Hy2 0= , (89c)
Ez2 0= , (89d)
Ex2 0= , (89e)

( ) ( )[ ]E A s z A s z ey x a z b z
j xx

2 2 2 2 2 2= + −β ωµ βcos sin . (89f)
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A suitable Hertz function for medium 3 that satisfies the boundary condition
� � �

E H when z= = → +∞0
is ( )∏ = − − −

3 3
3A e ejs z h j xz xβ . (90)

For sz3, the same reasoning applies as in the previous section.
Hence, proper wave solutions are obtained by letting Re( )jsz3 0≥  or

( )js sign k kz x x3
2

3
2 2

3
2= −





−Re β β . (91a)

To obtain improper wave solutions, let

( )js sign k kz x x3
2

3
2 2

3
2= − −





−Re β β . (91b)

Introducing (90) into (3) leads to
( ) ( )H A k s e ez z

js z h j xz x
3 3 3

2
3

2 3= − − − − β , (92a)
( )H A s e ex x z

js z h j xz x
3 3 3

3= − − − −β β , (92b)
Hy3 0= , (92c)
Ez3 0= , (92d)
Ex3 0= , (92e)

( )E A e ey x
js z h j xz x

3 3 3
3= − − −β ωµ β . (92f)

The tangential components of both 
�

E  and 
�

H are continuous across the
interface of two media and therefore
H H at zx x1 2 0= =
⇒ = −A s jA sz b z1 1 2 2 , (93)

as well as E E at zy y1 2 0= =
⇒ =µ µ1 1 2 2A A a . (94)

H H at z hx x2 3= =

( ) ( )[ ]⇒ − =js A s h A s h A sz b z a z z2 2 2 2 2 3 3cos sin , (95)

as well as E E at z hy y2 3= =

( ) ( )[ ]⇒ + =µ µ2 2 2 2 2 3 3A s h A s h Aa z b zcos sin . (96)
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Rewriting (94)

A A a1
2

1
2=

µ
µ

and substituting the result into (93) gives
µ
µ

2

1
1 2 2 2 0s A js Az a z b+ = . (97)

Rewriting (96)

( ) ( )[ ]A A s h A s ha z b z3
2

3
2 2 2 2= +

µ
µ

cos sin

and substituting the result into (95) leads to

( ) ( )− +








js s h s s h Az z z z a2 2

2

3
3 2 2sin cosµ

µ

( ) ( )+ −








 =js s h s s h Az z z z b2 2

2

3
3 2 2 0cos sin

µ
µ

. (98)

Equations (97) and (98) form a system of linear equations for the two
unknown factors A2a and A2b. The system is homogeneous, hence for non-
trivial solutions to exist, the coefficient determinant must be zero, that is

( ) ( )µ
µ

µ
µ

2

1
1 2 2

2

3
3 2s js s h s s hz z z z zcos sin−











( ) ( )+ +








 =js js s h s s hz z z z z2 2 2

2

3
3 2 0sin cosµ

µ

( ) ( )⇒ −








 + +









 =

µ
µ

µ
µ

µ
µ

2

1
1 2

2

3
3 2 2 2 2

2

3
3 0s js s s h js js s h sz z z z z z z ztan tan

( )⇒ ⋅ +






 = +









µ
µ

µ
µ

µ
µ

µ
µ

2

1

2

3
1 3 2

2
2 2

2

1
1

2

3
3s s s s h js s sz z z z z z ztan , (99)

Substituting (85a), (88) and (91a) into (99) results in the following ex-
pression for proper H-type traveling wave modes

( ) ( )− ⋅ ⋅ −




⋅ − ⋅ −




⋅ − + −











µ
µ

µ
µ

β β β β β2

1

2

3

2
1
2 2

1
2 2

3
2 2

3
2

2
2 2sign k k sign k k kx x x x xRe Re

( )⋅ − =tan h k x2
2 2β

( ) ( )k sign k k sign k kx x x x x2
2 2 2

1

2
1
2 2

1
2 2

3

2
3
2 2

3
2− ⋅ −




⋅ − + ⋅ −




⋅ −









β µ

µ
β β µ

µ
β βRe Re .

(100)

This equation is transcendental and can therefore only be solved
numerically for β x .
H-type surface wave modes in a three-layer structure can be subdivided
into odd and even modes in the special case when k1 equals k3. These
symmetrical H-type modes are further discussed in [3, pp. 712-716].



Example: Plane Proper Waves along a Dielectric Waveguide
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 1 0j µ r1 1 0j

σ2
.0
siemens

m
ε r2 2.26 0.00091j µ r2 1 0j

σ3
.0
siemens

m
ε r3 1 0j µ r3 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Enter the thickness of the middle layer:

h .0.006 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0 ε 3
.ε r3 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0 µ 3
.µ r3 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 209.585

rad
m

(k1 must be smaller than k2!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 315.075 0.063j

rad
m

k 3 ...j ω µ 3 σ3
..j ω ε 3 =k 3 209.585

rad
m

(k3 must be smaller than k2!)
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E-type proper wave modes:

js z1 β x
.

Re β x
2 k 1

2

Re β x
2 k 1

2
β x

2 k 1
2

js z3 β x
.

Re β x
2 k 3

2

Re β x
2 k 3

2
β x

2 k 3
2

F EP1 β x
...

σ2
..j ω ε 2

σ1
..j ω ε 1

σ2
..j ω ε 2

σ3
..j ω ε 3

js z1 β x js z3 β x k 2
2 β x

2

F EP2 β x tan .h k 2
2 β x

2

F EP3 β x
.k 2

2 β x
2 .

σ2
..j ω ε 2

σ1
..j ω ε 1

js z1 β x
.

σ2
..j ω ε 2

σ3
..j ω ε 3

js z3 β x

F EP β x
.F EP1 β x F EP2 β x F EP3 β x

β x k 2 β x root ,F EP β x β x =β x 315.075 0.063j
rad
m

=F EP β x 0 m 2

s z1 .j js z1 β x =s z1 0.085 235.258j
rad
m

s z3 .j js z3 β x =s z3 0.085 235.258j
rad
m
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N 301 Start x .0
rad
m

End x Re k 2 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EP ,x y
log .F EP Start x .x ∆x .j Start y .y ∆y m2

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EP Re(βx) [rad/m]
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H-type proper wave modes:

js z1 β x
.

Re β x
2 k 1

2

Re β x
2 k 1

2
β x

2 k 1
2

js z3 β x
.

Re β x
2 k 3

2

Re β x
2 k 3

2
β x

2 k 3
2

F HP1 β x
...

µ 2
µ 1

µ 2
µ 3

js z1 β x js z3 β x k 2
2 β x

2

F HP2 β x tan .h k 2
2 β x

2

F HP3 β x
.k 2

2 β x
2 .

µ 2
µ 1

js z1 β x
.

µ 2
µ 3

js z3 β x

F HP β x
.F HP1 β x F HP2 β x F HP3 β x

β x k 2 β x root ,F HP β x β x =β x 315.075 0.063j
rad
m

=F HP β x 0 m 2

s z1 .j js z1 β x =s z1 0.085 235.258j
rad
m

s z3 .j js z3 β x =s z3 0.085 235.258j
rad
m
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N 301 Start x .0
rad
m

End x Re k 2 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B HP ,x y
log .F HP Start x .x ∆x .j Start y .y ∆y m2

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B HP Re(βx) [rad/m]
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3.6  Plane Surface Waves along the Plane Interface of Two
Half Spaces

Dispersion equations for the proper traveling waves along the plane
interface of two half spaces (Fig. 3.1) can be obtained by letting h equal
zero in the dispersion equations of the three layer case ((83) and (100)).

For E-type proper waves this results in

( ) ( )0 2
1
2

2
1
2

1 1

2
3
2

2
3
2

3 3

= −





⋅
−

+
+ −





⋅
−

+
sign k

k
j

sign k
k

jx
x

x
xRe Reβ

β
σ ωε

β
β

σ ωε
. (101)

The dispersion for H-type proper waves is

( ) ( )0 2
1
2

2
1
2

1

2
3
2

2
3
2

3

= −





⋅
−

+ −





⋅
−

sign k
k

sign k
k

x
x

x
xRe Reβ

β
µ

β
β

µ
. (102)

EXAMPLE
The only propagating surface wave mode is a fast wave. Compare also the
location of the null in this example with the anomalous null in Example 9 of
Section 3.4.10.



Example: Plane Proper Waves along Two Half Spaces
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.26 0.5j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 316.974 34.645j

rad
m

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 209.585

rad
m
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E-type proper wave modes:

F EP β x
.

Re β x
2 k 1

2

Re β x
2 k 1

2

β x
2 k 1

2

σ1
..j ω ε 1

.
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EP β x β x =β x 175.483 5.753j

rad
m

=F EP β x 2.349 10 4 2.742 10 5 j kg m2 sec 1 coul 2

s z1 ..j
Re β x

2 k 1
2

Re β x
2 k 1

2
β x

2 k 1
2 =s z1 264.448 37.708j

rad
m

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 115.072 8.773j

rad
m
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N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EP ,x y
log ..F EP Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EP Re(βx) [rad/m]
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3.7 Appendix A: The Phase Velocity of an Inhomogeneous
Wave in a Loss Free Medium

The phase velocity of a wave in its propagation direction is given by

( )vp = ω
βRe

.

It will be shown now that every inhomogeneous plane wave in a loss free
medium ( Im( )k = 0 ) is a slow wave (i.e. β > k0) in its direction of
propagation.

Assume that the inhomogeneous plane wave propagates in the xz-plane.
The wave is then characterized by its wave vector
�

� �

k k e k ex x z z= + (A1)
where k jx x x= −β α  and k jz z z= −β α .

The direction of 
�

k  corresponds to the propagation direction 
�

β .
When the surrounding medium is loss free: Im( )k = 0 .
Hence, substituting the definitions of kx and kz into (A1) and squaring both
sides results in [8, p. 166]

( )k x z x z
2 2 2 2 2= + − +β β α α  because ( )− + =2 02 2 2 2j x x z zα β α β

⇒ = −
� �

�

k 2
2 2β α

⇒ = = + = + 





≥β β α α�

k k
k

k2 2
2

01 . (A2)

From this may be concluded that all inhomogeneous plane waves in a loss
free medium are slow waves in their direction of propagation.
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3.8 Appendix B: Proof of -j √√√√  x = √√√√  -x

Theorem
Let x be a complex number. Then
− = −j x x . (B1)

Proof
The above theorem can easily be proven by applying de Moivre’s theorem
to each side of (B1).

First, let θ be the argument of x.

Then, for the left hand side

− = − + °





+ + °











j x j x k j kcos sinθ θ360

2
360
2

          = + °





− + °











x k j ksin cosθ θ

2
180

2
180 . (B2)

The right hand gives

− = + °+ °





+ + °+ °











x x k j kcos sinθ θ180 360

2
180 360

2

         = + °+ °





+ + °+ °











x k j kcos sinθ θ

2
90 180

2
90 180

         = + °





− + °











x k j ksin cosθ θ

2
180

2
180 . (B3)

(B2) and (B3) are identical, therefore
− = −j x x .



97

3.9 Conclusions

A plane surface wave is defined as a plane wave that propagates along a
plane interface of two different media without radiation.

Dispersion equations are derived for three different kinds of isotropic planar
surface wave guiding structures. This is done by treating these structures
as boundary-value problems and then solving these using Hertz potentials.
The dispersion equations have a discrete number of both proper and
improper solutions.

A distinction is made between E-type and H-type surface waves.

The concept of surface impedance has also been introduced. It was shown
that E-type surface waves can only propagate along inductive surface
impedances. H-type surface waves only propagate when the surface
impedance is capacitive. This is perhaps the important conclusion of this of
chapter because it implies that isotropic surface wave absorbers are
effective for one polarization only.

The proper discrete eigenvalue spectrum does not form a complete set of
eigenvalues along which the field of an open guiding structure may be
expanded. However, the combination of the proper discrete eigenvalue
spectrum and the continuous eigenvalue spectrum does.

Surface waves were also compared with other kinds of traveling waves.
Some of these other waves are improper waves. By this is meant that they
violate the radiation condition.

All traveling wave types can be either fast or slow waves. To prove this, the
discrete eigenvalue spectrum is mapped onto the w-plane. This w-plane
also prooves to be an excellent tool for designing surface wave guiding
structures with specific propagation properties.
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